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The turbulent energy equation is converted into a differential equation for the 
turbulent shear stress by defining three empirical functions relating the turbuIent 
intensity, diffusion and dissipation to the shear stress profile. This equation, the 
mean momentum equation and the mean continuity equation form a hyperbolic 
system. Numerical integrations by the method of characteristics with preliminary 
choices of the three empirical functions compare favourably with the results of 
conventional calculation methods over a wide range of pressure gradients. 
Nearly all the empirical information required has been derived solely from the 
boundary layer in zero pressure gradient. 

1. Introduction 
The basic assumption made in most present-day methods of calculating the 

development of turbulent boundary layers is that the shear-stress profile at a 
given distance from the origin of the boundary layer is uniquely related to the 
mean-flow conditions a t  that station. The simplest version of this assumption is 
the ‘mixing-length’ or ‘eddy viscosity’ assumption that the shear stress a t  a 
point depends on the mean velocity gradient at  that point: the empirical equa- 
tions for dH/dx used in the integral methods reviewed by Thompson (1964) imply 
the more general assumption that the shear-stress profile (or the shear-stress 
integral, or the entrainment rate) depends only on the mean velocity profile, the 
Reynolds number and the pressure gradient. It was argued by Bradshaw & 
Ferriss (19653) that the shear stress 7 = -pUV is closely related to the turbulent 
kinetic energy &p(u2 + v2 + w2) and that the latter, being governed by the turbu- 
lent energy equation,$ is certainly not determined uniquely by the local mean- 
flow conditions. This argument is not of course new: one of the first to propose it 
was Dryden (1946). The poor performance of the above-mentioned calculation 
methods in practice lends support to the view that the assumption of a close rela- 
tion between the shear-stress profile and the mean velocity profile is not a realistic 
one for boundary layers in arbitrary pressure gradients, because it ignores the 
effect of the past history of the boundary layer, and that it is therefore unsuitable 
as the basis of the empirical correlations which must inevitably be used in any 
method of calculating turbulent flows short of a numerical solution of the Navier- 
Stokes equations. 

In the present paper we show that there is a much closer connexion between 
t ‘Sandwich ’ course student, March-September 1965. 
$ Not to be confused with the mean kinetic energy equation for $p( U s  + V* + W*). 
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the shear-stress profile and the other parameters describing the turbulence struc- 
ture than between the shear-stress profile and the mean velocity profile. In  fact, 
good results are obtained by assuming that the turbulent intensity is directly 
proportional to the local shear stress, that the dissipation rate is determined by 
the local shear stress and a length scale depending on y/6, and that the energy 
diffusion is directly proportional to the local shear stress with a factor depending 
on the maximum value of shear stress, but the method to be described is not 
dependent on these simple choices or indeed on the assumption of a one-to-one 
correspondence between the shear-stress profile and the turbulence structure : 
this latter is simply a first approximation, which is believed to be a very much 
better first approximation than the assumptions made in the older methods. 

If the relations between the shear stress and the intensity, dissipation and 
diffusion are known, the turbulent energy equation (which is an equation for the 
rate of change of turbulent intensity along a streamline) can be converted im- 
mediately into an equation for the rate of change of turbulent shear stress along 
a mean streamline in a two-dimensional boundary layer (the possibility of an 
extension to three-dimensional flow is discussed in $ 6) .  This equation, together 
with the mean momentum equation (the ‘ boundary-layer equation ’) and the 
mean continuity equation, can be solved numerically by a step-by-step method. 
Even with the present meagre information about the empirical functions relating 
the shear stress to the other properties of the turbulence, the results compare 
favourably with the predictions of the integral methods and the new method 
seems inherently less likely to give ridiculous results in the special cases which 
bring the integral methods to grief. An electronic digital computer is needed but 
the cost of KDF 9 computer time, using a rather slow-running programming 
language, is only about 2s. 6d. for a streamwise distance of one boundary-layer 
thickness and could be reduced to about 2d. by writing the program in machine 
code. The cost on other machines should be of the same order, so that the length 
of the calculations compared with the integral methods is not prohibitive. 

The method is a logical extension of the work of Townsend (1961, 1965), who 
used the turbulent energy equation to produce an equation for the shear stress in 
the inner layer where the rate of change along a mean streamline is negligible. 
In  fact Townsend, in the appendix to the latter paper, anticipated the present 
method by making an allowa,nce for the advection. The method also bears some 
resemblance to the work of Glushko (1965), although Glushko uses the turbulent 
kinetic energy equation only to calculate the turbulent intensity 42 and then 
makes - the highly questionable assumption that the eddy viscosity vT is given by 
(@)*L/v, = constant. Prof. G. M. Lilley has informed us that he has done some 
work (unpublished) on similar lines to ours. 

In  $2 ,  the shear-stress equation is derived: it is shown that the shear-stress 
equation, the momentum equation and the continuity equation form a hyper- 
bolic system, and the physical significance of this is discussed. In  $3, estimates are 
made of the three empirical functions which appear in the shear-stress equation. 
$ 4 presents the numerical method using the method of characteristics, and in $ 5 
some comparisons with experiment are shown. The computer program is des- 
cribed by Ferriss & Bradshaw (1966), and a much faster one is being developed. 
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2. Derivation of a differential equation for turbulent shear stress 

flow, outside the viscous sublayer, is (Townsend 1956) 
The turbulent energy equation for a two-dimensional incompressible mean 

advection pro- diffusion dissipa- 
duction tion 

where q2 = u2+v2+w2, r = -pUV and E II ~ ( 8 ' u J a x ~ ) ~ .  

It can be regarded as an equation for the advection or rate of change of turbulent 
kinetic energy along a mean streamline through a point if all the other terms are 
known at that point, just as the boundary-layer momentum equation, 

p[uaulax+ vau/ayl= pu,dU,/dx+a~/ay, (2) 

can be regarded as an equation for the rate of change of mean-flow momentum 
PU. 

Now, if we define 

(the definition of G being chosen for later convenience), (1) becomes 

where a,, L and G are functions of y/S which depend on the shape of the shear- 
stress profile. a, and G are dimensionless and L has the dimensions of length: it 
is nearly the same as the 'dissipation length parameter' L, used by Townsend 
(1961), and is the most important of the three functions because over most of 
the boundary layer the dissipation is much larger than the advection or diffusion. 
By dividing through by r ip  it can be seen that (4) is the 'mixing-length' equation 
with additional terms representing advection and diffusion. The present method 
is therefore a refinement of mixing-length theory, and reduces to mixing-length 
theory in regions where the latter is valid according to the analyses of Batchelor 
(1950) and Townsend (1961). If adequate assumptions can be made for a,, L and 
G then (2) and (a), together with the continuity equation 

(5) a ulax + a v/ay = o 
form a set of three equations in the three unknowns U ,  V and r (the computer 
program covers the case of laterally convergent boundary layers and thin 
boundary layers on bodies of revolution but for simplicity the consequent modi 
fications to the analysis are omitted from the present paper). 

With the exception of the pressure diffusion F, which, as Bradshaw & E'erriss 
(1965~)  and Bradshaw (1966) have suggested on slender evidence, may be small, 

38-2 
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all the terms in the definitions of a,, L and G can be measured by hot-wire tech- 
niques. Although such measurements are not at  present of high accuracy they 
can be used as a first approximation, to be improved by comparing the results of 
numerical calculations of boundary-layer development with experimental 
results. Although it is the chief merit of the present method that it takes into 
account the upstream history of the flow as represented by the advection term, 
this term is sufficiently small in most cases for the exact behaviour of u, to be less 
important, than the behaviour of L, except in the outer part of the boundary 
layer where advection and diffusion are nearly equal, and even here it is only 
necessary to insert the correct behaviour of alG (see (17) below). For most of these 
early calculations we have taken a, to be an absolute constant, 0.15, and the 
analysis below will be presented for constant a,: the hyperbolic nature of the 
equations is not altered by allowing a, to vary and the numerical procedure is 
insignificantly more complicated, but the details are less easy to follow. The 
choice of the empirical functions is discussed in 5 3. 

The hyperbolicity of ( 2 ) ,  (4) and (5) can be demonstrated by standard methods 
(see 5 4). Mathematically, hyperbolicity means that there exist real ' character- 
istic' directions, as many in number as there are equations, along which the 
partial differential equations reduce to ordinary differential equations contain- 
ing gradients along the characteristics only. In the present case, the angle between 
a characteristic and the x-axis, y ,  is given by the three values 

tany = co, [V+aalG~kax+ (a~G2~,ax+2a17)Q] /U ,  (6) 

(in this and the following analysis we write T for ?/p, for simplicity). 
In  any system of equations based on the boundary-layer approximation, at 

least one characteristic will be vertical because pressure disturbances are assumed 
to propagate instantaneously through the thickness of the boundary layer 
(ap/ay = O ) ,  even in supersonic flow. 

It is easily seen by substituting the continuity equation into the momentum 
equation that the equation along the vertical characteristic is 

- Ujd Vjdy + Vjd Ujdy = U,/dU,/dX + dT/dy. (7) 

The equations along the inclined characteristics are 

where s is measured along the characteristic, dxjds is unity to the boundary- 
layer approximation, and M = 

When ( 2 ) ,  (4) and (5) were first derived, we supposed, in so far as we thought 
about it a t  all, that the equations were parabolic like the ordinary laminar 
boundary-layer equationsinwhich?isgivenbyr =,uau/ay. Wearegreatlyindebted 
to M i  P. G. Williams, formerly ofMathematics Division, NPL, for pointing out that 
the equations were in fact hyperbolic. If a 'gradient diffusion' form is used to 
represent the energy diffusion a term a2r/ay2 appears and the equations become 
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parabolic: with no diffusion at  all, they are hyperbolic. In  93 it  is suggested that 
the present form of the diffusion term is physically more reasonable than a 
gradient -diff usion form. 

It is seen that the equations along the inclined characteristics do not contain 
V at all, so that, to the boundary-layer approximation, the effect of the V-com- 
ponent velocity is merely to displace the flow in the y-direction,leaving the develop- 
ment of U and7 along a given streamline unaltered. Arelated but less general prin- 
ciple holds in laminar boundary layers, where it is called Prandtl’s transposition 
theorem. V occursin theequationsfor the characteristicdirections: when Gissmall, 
in the inner layer, 

and the characteristics are at  equal and opposite angles to the mean streamline. 
When r is small, near the outer edge, 

tan y = [ V (2a17)4]/ U (9) 

so that one characteristic coincides with the streamline and the other is inclined 
at a steeper angle than the streamline because of the outward diffusion of tur- 
bulent energy. In  fact, it  can be seen from (17), below, that the latter character- 
istic coincides with the edge of the boundary layer (defined as the line along which 
UlU, = constant = 0.995, say). 

The physical significance of hyperbolicity is that the effect of a small disturb- 
ance at  a point P is confined to the ‘downstream’ side of the characteristics 
through P. In the familiar case of inviscid supersonic flow there are only two 
characteristic directions (the dependent variables being U and V ) ,  which are 
inclined at  the Mach angles. In  the present case, the variables U and T can be 
considered separately from V ,  and the physical situation represented by the finite 
angle between the inclined characteristics is the finite angle of spread of contamin- 
ant diffusing from a point source. In  homogeneous turbulence the standard 
deviation of such a contaminant ‘wake ’ is [(v“)4/ U ]  (x - x,,) for small (x - xo). 
We should not expect any quantitative connexion between passive-scalar dif- 
fusion and the diffusion of momentum which the present equations represent: 
the comparison is offered as a simple explanation of the unexpected hyperbolicity 
of the equations. (It may be noted that in molecular diffusion the ‘wake’ initially 
spreads parabolically instead of linearly, which is why the laminar boundary- 
layer equations are-in the other sense-parabolic.) The only previous recogni- 
tion of the hyperbolicity of turbulent diffusion that we have been able to find is 
in the work of Davies (1953), which does not seem to have been followed up, 
Monin’s (1959) assumption of a finite maximum velocity of diffusion naturally 
leads to a hyperbolic equation but it is not necessary to make such an assumption 
to explain the finite rate of increase of standard deviation of the near-Gaussian 
contaminant profile, as has been recognized by Pasquill (1966). It should be 
emphasized that hyperbolicity is a feature only of the mean equations (2), (4) and 
(5) : the instantaneous (Navier-Stokes) equations are elliptic. 

The only vital approximations made in the derivation of the equations are (i) 
the boundary-layer approximation, which implies that there is no static-pressure 
difference across the layer, and (ii), implicitly, that a,, L and G change much more 
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slowly than 7 and U in the x-direction, so that they can be regarded as well- 
behaved coeficients rather than variables. The first assumption precludes up- 
stream influence of pressure changes but the insensitivity of the development 
along the streamlines to changes in streamline angle leads one to believe that the 
hyperbolic nature of turbulent mixing is rather more fundamental than the 
boundary-layer approximation and is not necessarily incompatible with pressure 
changes across the layer or even fully elliptic behaviour of the pressure. The 
second assumption probably requires only that sudden changes at one value of y 
(for instasnee, a change in boundary condition a t  the surface) shall not produce 
large changes in a,, L and G at other values of y. This seems to be another restric- 
tion on the pressure field, this time a requirement that extraneous pressure 
fluctuations shall not have a large effect on the shear-stress-producing part of the 
turbulence: some evidence in support of this was given by Bradshaw (1965). 
Strictly speaking, the dependence of G on r,,, implies that conditions a t  one 
value of y affect conditions at all other values of y, whereas the physical reasoning 
advanced in support of the hyperbolicity of the model equations implies that 
changes should spread slowly across the boundary layer as the eddies move 
downstream. However, T,,, is the simplest measure of the overall turbulent 
intensity, and will not, as arule, change very violently with distance downstream. 

Since a,, L and G must be specified numerically, there is little hope of deriving 
any general analytical solutions of the equations, but two special cases are of 
interest. 

(i) Near the surface, the turbulent energy equation reduces to ‘production’ 
equals ‘dissipation’ or, in the present notation, 

so that 

and L is equal to the mixing length, which is known to be about 0.4~ in this 
region. This special case, and its extension to the case where diffusion is not negli- 
gible, have been discussed by Batchelor (1950) and Townsend (1961, 1965). 

(ii) Near the outer edge of the boundary layer, the turbulent energy equation 
reduces to ‘diffusion’ equals ‘advection’ so that 

and, if we introduce a variable 7 such that 

a a a u-+v- = ( P - q U ) -  
ax ay aY ’ 

which is in effect an assumption of self-preservation, we have 

Over a small range of q in the region where 7 goes to zero very rapidly, we can 
integrate to obtain 

yU - V = 2a,Gr&,, 
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and since, at  y = 6 , ~  U - V is equal to the entrainment rate dQ/dx = d Ul(6- 6,)ldx 
we have 

dQldx = 2 ~ & ( a ~ G ) ~ = ~ .  (17) 

These two special cases are useful in choosing the empirical functions for L and 
a,G: it is far easier to measure entrainment from mean velocity profiles than to 
measure the turbulent diffusion directly. The identification of L with the mixing 
length in the region where advection is negligible implies that all the results of 
mixing-length theory for the inner layer (see, for instance, Townsend (1965)) can 
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( a )  ( a )  
FIGURE 1. (a) Charaoterietio mesh. ( b )  Near separation. 

be recovered, sometimes more elegantly, and that the numerical solutions can be 
joined on to the universal inner-layer solutions for a smooth, rough or porous 
surface. It should be emphasized that L is not equal to the mixing length if advec- 
tion or diffusion is appreciable: the distinction between the present theory and 
mixing-length theory is that L, which is a quantity relating one turbulence 
parameter to another, is much more likely to be a universal function than the 
mixing length, which is a quantity relating a turbulence parameter to the mean 
flow. Therefore the present calculation method can scarcely fail to be an improve- 
ment over the mixing-length (or eddy-viscosity) methods. 

The behaviour of the equations near separation is interesting. If d.r,/dx is 
negative and large enough, the value of V at the calculation point nearest the 
surface will exceed ,/(2a17) so that the ‘ingoing’ characteristic moves outwards 
(figure 1 (b ) ) .  Once this has happened, the region between this characteristic line 
and the wall is inaccessible. In  practical cases this occurs extremely near the 
true separation point and is of no consequence; in fact V is taken as zero at  the 
first calculation point for computational simplicity. The same phenomenon 
occurs in boundary layers with injection. 

3. The choice of empirical functions 
The accuracy of the calculation method depends entirely on the empirical 

functions al, L and 0. The moderately good results reported in the present paper 
have been achieved with extremely simple choices 



600 P. Braashaw, D. H .  Ferriss and N .  P. Atwell 

0 0.1 0 2  03 0.4 0 5  0 6  0 7  08 0.9 1.0 1.1 1.2 1.3 1.4 

Y/&m, 

(a)  

40 

35 

30 

25 
el- 
5 

20 3 
2 

15 

10 

5 

0 

0.001 0.01 

7 m a x I P  u2 
( b )  

FIGURE 2(a),  ( b ) .  Empirical functions used in the calculations. 
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where S is the total thickness of the boundary layer: strictly, the length scale 
should be a typical length scale of the largest turbulent eddies, for which the most 
logical choice is the distance from the surface to the point at which the inter- 
mittency, y, is 0-5 (the average position of the turbulence front), but the ratio of 
this distance to the boundary-layer thickness seems to be nearly constant, at  
least for equilibrium boundary layers (Bradshaw 1966). We take S as the value 
of y at  which UlU, = 0.995, the definition used by Head (1958) and others. 

The dissipation length parameter L varies as Ky near the wall, where K is 
von K&rm&n’s constant, and is satisfactorily represented in the outer part of the 
boundary layer by O.O95Sy*, which implies that the dissipation length parameter 
within the turbulent fluid, (yr)*/ye, is independent of y in the outer part of the 
layer. Direct evidence for this is given by Bradshaw (1966): in that paper it is 
shown that the higher-frequency part of the spectra in the outer part of three 
widely different equilibrium boundary layers is determined, to fair accuracy, by 
a velocity scale r* and a length scale S. If, as is to be expected, the energy transfer 
through this frequency range to the very-high-frequency dissipating eddies is 
determined by the same scales, it  follows that ye a (77)$/S. An analogous argu- 
ment in the inner layer, based on the spectra of Bradshaw (1965), which scale on 
7; and y, leads to the well-supported results L cc y, which lends support to the 
above deductions for the outer layer. 

In  the last-named paper, evidence is presented that the considerable variation 
in a, observed experimentally is at  least partly due to an ‘inactive’, quasi- 
irrotational component of the turbulent motion (Townsend 1961), which does not 
contribute to the shear stress or the dissipation and can therefore be disregarded; 
therefore a, = constant is a much better approximation than at first appears. 
The value of a, in an infinite uniform shear flow (Rose 1966) is about 0.17. 

The definition of the diffusion function G requires some justification, since 
turbulent diffusion is still often thought of as a gradient-diffusion process and 
Glushko, for instance, has assumed that 

Townsend (1956) has argued that at least part of the turbulent diffusion of energy 
is effected by the large eddies, and more recent studies (see, for instance, Brad- 
shaw (1966)) have indicated that the large eddies are much stronger than 
Townsend supposed, so that it seems probable that most of the diffusion is 
effected by the large eddies, at  least in the outer part of the boundary layer where 
the diffusion term in the energy equation is most important. This part of the 
diffusion may be represented by 

where Y is the effective velocity at which the turbulent energy is transported in 
the y-direction by the large eddies. Now @ is expected to be related to the aver- 
age shear stress across the outer part of the boundary layer, since this is what will 
determine the large-eddy intensity, and an adequate preliminary choice is the 
maximum shear stress in the region 0.25Sgg, < y < S,,,; we expect, of course, 
that V will be a function of y/S. Thus, replacing the turbulent energy by r ,  we get 

jZ + &p& = r(Tmax)* G(y/S). 

jzus ip* a y(a/ay) (@. 

- pv + *pq& = + p p ,  
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Keffer (1965) has represented the energy diffusion in a wake by the sum of a 
large-eddy contribution and a gradient-diffusion contribution, which he suggests 
will be of equal order, It can be seen that the gradient-diffusion term leads to an 
improbable variation of velocity near the edge of the flow, but further experience 
with the present calculation method may make it advisable to insert a gradient- 
diffusion term to represent processes well inside the turbulent flow. 

The present hypothesis indicates that the dimensionless entrainment rate, 
related to the energy diffusion by (17), should vary as T&&Tl if the ratio of the 
large-eddy intensity to T,,, is constant. In  fact Bradshaw (1966) has shown that 
in equilibrium boundary layers the large-eddy intensity increases more quickly 
than T,,,: the more intense the turbulence, the stronger the large eddies are in 
comparison with the rest of the turbulence. The ultimate is the free mixing layer 
(Bradshaw, Ferriss & Johnson 1964) where the large eddies entirely dominate 
the turbulence. In  figure 3 (b )  values of entrainment rate are shown for the mixing 
layer and for several very different boundary layers. The boundary layers marked 
‘0-t - 0.255’ (Bradshaw, to be published) and ‘Newman (1951)’ are progressing 
towards separation while ‘ - 0.255+0’ (Bradshaw & Ferriss 1965b) passes 
from adverse pressure gradient to zero pressure gradient. In  view of the difficul- 
ties of measuring entrainment (we have allowed for lateral convergence in some 
of these flows) the most that can be said is that the results give fair support for 
the relation 

and it follows from (17) that G(y/6) itself varies as (T,,,/U;)O.~. Where the shear 
stress is a maximum at or close to the wall we have taken T,, as T at y/6 = 0.25, 
a value chosen to give the right entrainment in Herring & Norbury’s (1963) 
accelerating boundary layer. It may be remarked that this empirical variation 
of G with -r,,,/U? is the only information needed in the calculations that is not 
derived solely from the boundary layer in zero pressure gradient. 

The functions used in the calculations presented here axe shown in figure 3 (a).  
a, was taken as 0.15. The calculations are extraordinarily insensitive to the be- 
haviour of G within the layer and even a change in G at the outer edge of the 
layer produces a much less than proportional change in the results. The sensitivity 
to changes in L is roughly what would be expected from assuming L to be equal 
to the mixing length. 

4. The numerical method 
Before discovering that the equations were hyperbolic we programmed an 

explicit rectangular-mesh finite-difference method. Although it was abandoned 
in favour of the method of characteristics it may prove to have some uses in the 
future: a brief description was given in the unpublished version of this paper, 
NPL Aero Report 1182 (1966). 

The derivation of the equations for the three characteristic angles and the 
differential equations along the characteristics is tedious but straightforward. 
Good accounts of the method used are given by Ralston & Wilf 1960, chapter 15), 
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Collatz (1959, p. 323) and Staff of the Mathematics Division NPL (1961, chapter 
11). The first-named is especially recommended from the point of view of numer- 
ical solution by a digital computer. The characteristic angles are given by (6) and 
the differential equations are (7) and (8). Since one of the characteristics is the 
line x = constant, on which it is convenient to  specify the initial values, only two 
of the three variables need be specified, the third being derivable from the equa- 
tion along this characteristic. We have chosen to specify U and r. 

V does not appear in (8), so that, after conversion to finite-difference form, 
only two simultaneous equations have to be solved, for U and r,  and not three for 
U ,  V and r. (7) is then integrated separately to provide V ,  which appears in the 
equations for the slopes of the inclined characteristics, tan a and t anp  say. The 
finite-difference scheme used calculates new values at  equal intervals along a 
line x = constant rather than at  points entirely determined by the characteristic 
mesh (‘Method 11’ of Ralston & Wilf). 

Figure 1 (a )  shows how U ,  V and r on a new profile are calculated from the 
values on the previous profile. The line labelled ‘old profile’ represents either the 
input or the last profile calculated at any stage during the run. The calculation is 
started at  a finite distance from the wall because the equations are not valid in 
the viscous sublayer-indeed the equations have a singularity a t  the wall, where 
all three characteristic angles tend to 90’. It is assumed that U and r at the first 
mesh point (A) are connected by the modified logarithmic law 

with K = 0.40, A = 2.0, where z = ay/rw and the relation r = rw + a y  is assumed 
to hold near the wall, and where a is determined from the previous x-steps. This 
enables a solution a t  point A, downstream (see figure 1 (a)) to be obtained from 
the equation along the ,8 or ‘ingoing’ characteristic only. The value of rW actually 
output by the computer is derived from a new value of a obtained from a least- 
squares straight line through the first three points on the r profile. 

We have abandoned our earlier requirement that u, y/v at  point A should be 
greater than 40, so that the logarithmic law should be valid a t  that point, because 
it leads to inaccuracy and instability in extrapolating the shear stress to the 
surface at  low Reynolds numbers when point A has to be taken several y-steps 
from the surface. Taking this distance to be equal to the y-step in all cases implies 
the assumption that the shear stress at  u, y/v < 40 is the same as if the logarithmic 
law was still valid-which is at least as justifiable as assuming r = rw + ay. The 
velocity at  point A output by the computer is incorrect if u, (y step)/v < 40 but 
the displacement and momentum thicknesses are evaluated correctly by our 
program. 

In the case of boundary layers with suction or injection the ‘logarithmic’ law 
used as the inner boundary conditions becomes 

:[ eULY 1 2 
- [ (w,+U:)* -u]=-  log - + A  , v, 

where A is in general a function of Vw/u7. 
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Equations (5) and (8) are rewritten with finite-difference quotients to repre- 
sent the derivatives in the characteristic direction, and the x-step AX is chosen 
subject to a stability condition to be mentioned later. We then have for the a 
and /3 characteristic equations 

where CT, = G, N + [G2, H 2  + ( 27,/a1)]3, gD = Gp M - [G; M 2  + ( 27p/a1)]fr and Ulc 
and U,, are the values of U at the ends of the characteristic segments. The a and 
p suffixes to U ,  r, L and G denote average values of these quantities on the 
characteristic as distinct from end values. (19) can now be solved for U and r. 

The method proceeds as follows, starting a t  mesh point B on the new profile. 
(1) The old values of a and p are used to construct straight-line portions of the 

characteristics intersecting on the new profile and cutting the old profile at  
intermediate points. 

(2) U and T are interpolated a t  these intermediate points and labelled ul, 71, 

u2 and 7, as shown in figure 1 (a). A quadratic interpolation procedure is used for 
this. 

(3) The values of U and r with a and p suffixes in (19) are put equal to u1 and 
71 or u, and r, as appropriate as a first approximation. 

(4) The resulting equations are then solved for U and 7 on the new profile. 
(5) The process is repeated at  the other mesh points C, D, etc., so as to obtain 

U and 7 over the whole range of y. 
(6) All the U and r values are then used to find corresponding V values along 

the vertical characteristic using a finite difference form of (3), starting with 
V, = 0 at  point A. 

(7) Values of a and /3 are then calculated for the new profile. 
(8) The values of U ,  7 ,  V ,  a and ,13 on the new profile are then used to correct 

estimates of these quantities on the characteristics for the first 10-20 % of the 
boundary layer, where the gradients are largest. New values of the quantities are 
then re-calculated using these new estimates for this portion of the boundary 
layer. The alternative to this is to decrease the x-step which would result in in- 
creased computer time spent on the outer portion of the boundary layer, which 
is already calculated to sufficient accuracy. 

(9) The new profile is then used as the input for calculations one step further 
downstream. 

A flow diagram of the computer program is shown in figure 3. 
It was mentioned above that the x-step choice is subject to one condition: this 

T = (AxIAy) tan a(max) < 1, 
is that 

where Ay is the step size in the y-direction, usually taken as 0.026 on the initial 
profile. We have found this to be necessary for the stability of the method as a 
whole and it has so far proved sufficient, except in the latest version of the appli- 
cation of the inner boundary condition, where the use of a least-squares linear 
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extrapolation of the shear stress to the wall caused instability for r = 1 in some 
cases: putting r = 0.9 cured the trouble, a t  the cost of a 10 % increase in computer 
time. For the case of the linear wave equation it has been shown (Richtmyer 
1957) that r < 1 is necessary and sufficient for stability, although this has not 
been proved for general non-linear hyperbolic systems as yet. The only other 
restrictions required for stability are that UlU, shall not exceed unity, and that 

I 
l a a l a t e  w, tan J, tan 8, for ‘new profile’( 

- 

ICorrsct u and T by iterating over first 20;; of B.L. 

[Correct corresponding o, tan CL, tan 81 
.I 

Has B.L. 
grown to twice 

original 

‘old profile’ stores 

t 

FIGURE 3. Flow diagram (see figure 1 for notation). 
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r shall not be less than zero, at  the edge of the boundary layer. This merely in- 
volves ‘ clipping ’ values which fall outside these limits because of finite-difference 
errors. 

The boundary layer is allowed to grow during the calculation by adding two 
mesh points at every x-step, and putting U and r at these points equal to the 
free-stream velocity and zero respectively. The calculation of U and r in the y- 
direction is then halted whenever two consecutive U and r values differ by less 
than a specified amount. This rejects any of the extra added mesh points that are 
not required; in fact, the boundary layer cannot grow faster than about one 
mesh point per x-step, because the edge of the boundary layer coincides with the 
outgoing characteristic. Subsequent to every x-step, the L and G data are re- 
scaled on the new value of boundary-layer thickness. When the number of points 
on the profile reaches double the initial number (which is usually taken as 50), 
every other point is rejected and the calculation continued with twice the y-step: 
this saves computer time. The accuracy of the finite-difference approximation is 
shown by the absence of any appreciable transients resulting from this change, 
and by the satisfactory agreement with the momentum integral equation (less 
than 1 yo error over a 100-step run in zero pressure gradient). 

5. Test cases 
We have used Klebanoff’s (1955) results in zero pressure gradient to find the 

best choices for al, L and G ,  starting from values of these functions determined 
from hot-wire measurements and adjusting them by trial and error so as to get 
the best agreement between calculated and measured velocity and shear-stress 
profiles (figure 4). There is still room for slight improvement but the surface shear 
stress is predicted to within the current uncertainty of experimental results. The 
variation of surface shear stress with Reynolds number as found from runs a t  
U,S,lv = 14,000 and 140,000 agrees within about 2 % with the empirical relation 
of Coles (1962). At the higher Reynolds number the calculated values agree with 
the measurements of Winter, Smith & Gaudet (1965) but at  lower Reynolds 
numbers these experiments give a smaller shear stress than either Coles’s law or 
the present calculations. Except for the variation of G with r,,,/U; the only 
effect of Reynolds number in the present calculation method is represented by 
the well-established logarithmic law, so that the method should be reliable over 
a wide range of Reynolds numbers without the usual dangers of extrapolating 
laboratory data to full-scale conditions. 

In  figures 5 to 7 the calculated velocity and shear stress profiles in several 
equilibrium boundary layers are compared with experiment. The empirical func- 
tions used were the same as in figure 4. The agreement could be made exact by 
allowing the empirical functions to depend on r,,,/U: but the figures show that 
the present simple assumptions are reasonably accurate. 

Figures 8 (a )  to 8 (f) show comparisons with experiment in arbitrary pressure 
gradients, including two boundary layers with a prolonged region of adverse 
pressure gradient (Bradshaw, to be published) set up especially as a severe test 
of the method: the advection terms are more important in boundary layers of 
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this type than in those progressing rapidly towards separation. These figures 
show all the test cases we have done: we have not selected the best. Detailed 
tabulations are available from the authors. It may be worth reiterating that, 
except for the ‘entrainment’ correlation of figure 4 ( b )  used to scale G, which does 

1.0 
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0.6 

0.2 

0 

( 6 )  

FIGURE 4. Zero pressure gradient, Klebanoff (1955), adjusted to U,S,/U = 12,400. 
(a )  Mean velocity, ( b )  shear strem 

not play a large part in the calculations, the only empirical data used were ob- 
tained from the boundary layer in zero pressure gradient. For the most part we 
have restricted ourselves to boundary layers for which accurate shear stress pro- 
files are available, because prediction of the shear stress is a more severe test than 
prediction of thevelocity profile (it is roughly the same as prediction of thevelocity 
gradient). In  all cases we have used the experimental measurements, without ad- 
justment, to start the calculations: in Schubauer & Klebanoffs (1951) boundary 
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layer the initial shear-stress profile was taken to be that in zero pressure gradient 
with the appropriate surface shear stress, but the immediate divergence of cf 
and H from the experimental trend indicates that this was not quite correct. 
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FIGURE 5. Equilibrium boundary layer U,az-o.a66, Bradshaw (1966). 
(a)  Mean velocity, ( b )  shear stress. 

Similar divergences in some of the other cases are partly attributable to short- 
comings in the method and partly to inaccuracies in the starting data. For in- 
stance, the velocity profile a t  x = 0 in Schubauer & Spangenberg’s (1960) 
boundary layer ‘D’ is not quite consistent with their assertion (which we have 
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taken to be correct) that the boundary layer developed in zero pressure gradient 
for x < 0. (The difference between the two calculations for this case shows that 
large errors can arise in the derivation of pressure distributions from small pub- 
lished graphs.) Uncertainty about the initial conditions is a very real difficulty in 
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FIGURE 6. Equilibrium boundary layer Ulax-O.l5, Bradshaw (1966). (a)  Mean velocity, 
( b )  shear stress. 

boundary-layer calculations (McDonald & Stoddart 1965) and we do not pretend 
to  deal with it here. Methods which require less initial information than the 
present one are not to be preferred on that account: to ignore a problem is not to 
solve it. The velocity and shear-stress profiles are not simply related and it is 
necessary to insert information about both. 

39 F lu id  Mech. 28 
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The only way in which we have tampered with the experimental data is to  
insert, in figures S(c), ( d )  and (f), a value for the lateral convergence of the flow 
derived from the imbalance in the two-dimensional momentum integral equa- 
tion. We have neglected the normal stress terms, whose importance cannot be 

025 050 

~~ 

0 025 050 0.75 1.00 1-25 

2//4w, 

( b )  

FIGURE 7. Equilibrium boundary layer in favourable pressure gradient 
(SJT,L , )dp/dx  = -0.35, Herring & Norbury (1963). (a )  Mean velocity, (b )  shear stress. 

estimated from velocity profiles measured with Pitot and static tubes because the 
effect of the turbulence on the pressure readings is of the same order as the normal 
stresses: it would be possible t o  insert an allowance for the normal-stress terms, 
making use of the basic assumption that the shear-stress profile uniquely deter- 
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mines the turbulence, but it would not be realistic to do so a t  present. We have 
also neglected variation of the pressure through the boundary layer, which may 
be appreciable near separation (the asterisks on the x-axis in figures 8 ( c )  and 
8 ( d )  mark the point where V / U  first exceeds 0.1 a t  the edge of the layer, which 
may be taken as the point of failure of the boundary-layer approximation). This 
allowance for convergence implies that the comparison between experimental 
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FIGURE 8. Comparisons with experiment in arbitrary pressure gradient. (a)  Bradshaw 
' 0  -+ -0 .255' ,  thin initial boundary layer, (b)  Bradshaw '0 + -0.255', thick initial 
boundary layer. 

and calculated values of momentum thickness 8, adds nothing to the comparison 
for cf and H ,  except in some cases to show that the assumed convergence is not 
quite correct because of scatter in the measurements, and in others to show that 
an allowance for convergence should have been made. 

H is not such an important parameter as in conventional calculation methods, 
since it is not used to determine c j :  for aerofoil drag prediction we merely require 
8, and 8, a t  the trailing edge to good percentage accuracy. Nor is H ,  or any other 
parameter, required a,s a criterion of separation: separation is indicated by the 
surface shear stress becoming zero, although if separation does occur 'boundary 

39-2 
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layer ' calculations with an assumed pressure distribution are an academic exercise, 
and account should be taken of interaction between the boundary layer and the 
free stream. 

The best test ofthe method from the engineering point of view is the prediction 
of cf and S,,, (which is needed to scale L and G). Since there is no consistent bias 
in these predictions it seems likely that the method is accurate to within the 
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FIGUBE 8. (c) Newman (1951), ( d )  Schubauer & Klebanoff (1951). 

experimental inaccuracies (particularly the inaccuracies of the initial data and 
the flow convergence). This is, of course, quite a modest claim, because the data 
leave much t o  be desired. Nevertheless, the agreement with experiment over a 
wide range of Reynolds numbers and pressure gradients seems to be better than 
that of any of the existing data-correlation methods based on empirical relations 
between the shear-stress and velocity profiles, all of which are inevitably un- 
reliable in boundary layers noticeably different from those used to provide the 
empirical data. 

In  addition to these test cases, we have obtained very good agreement with 
measurements in a boundary layer with injection (Yw/Ul = 0-00178, slight adverse 
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pressure gradient) by Dr J. McQuaid, formerly of the Cambridge University 
Engineering Laboratory, to whom we are indebted for access to his unpublished 
data. The additive constant A in the inner-layer velocity profile was taken as 
2.0 as on a solid surface. Calculations in a boundary layer with suction 
(V,/U, = -0.00246, zero pressure gradient) required A = 3.3 to give the best 
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FIGURE 8. ( e )  Schubauer & Spangenberg 'D'  (1960) -, calculations using pressure distri- 
bution from tabulated data ; ---, calculations using pressure distribution from published 
graph. (f) Bradshaw & Ferriss (19656) ' - 0.255 + 0'. 

agreement with the data of Sarnecki (1958, kindly supplied by Dr B.G.J. 
Thompson, formerly of the Cambridge University Engineering Laboratory). In  
view of the current uncertainty about the actual behaviour of A these calcula- 
tions are not a very useful additional test of the method, although they lend 
support to the hypothesis that the turbulence structure is unaltered by moderate 
suction or injection (or, it is safe to say, by moderate surface roughness, which 
can be simulated in the calculations merely by prescribing A ) .  
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6. Extension of the method 
The application of the method to compressible boundary layers is straight- 

forward if one relies on Morkovin’s (1962) suggestion that the turbulence struc- 
ture is unaffected by compressibility if the Mach number based on a typical 
velocity fluctuation is small (free-stream Mach numbers less than 5 say). The 
extra information required is the temperature distribution across the layer and 
the change, if any, in the universal inner-layer velocity profile. For the case of 
zero heat transfer, it is adequate to use the Crocco relation for the total tem- 
perature 

where suffix 1 indicates conditions a t  the edge of the boundary layer, or even t o  
make the assumption of constant total temperature outside the inner layer. An 
empirical recovery factor is needed but this does not seem to be greatly affected 
by pressure gradient. Calculations by this method predict a surface shear-stress 
coefficient in zero pressure gradient within 3 yo of the Spalding & Chi (1964) corre- 
lation up to a Mach number of 4 (Bradshaw & Ferriss 1966). 

Heat transfer (with constant fluid properties) can be calculated by converting 
the thermal fluctuation ‘energy ’ equation (Johnson 1959) for the mean-square 
temperature fluctuation @ into an equation for the heat flux &, just as the equa- 
tion for is converted into an equation for the momentum flux UV. Analogous 
empirical expressions for diffusion of temperature fluctuations by the turbulence 
and their dissipation by molecular conductivity are required and no data are yet 
available except for some measurements by Johnson which disagree rather 
strongly with the predictions of inner-layer similarity. The mean temperature 
equation and the heat-flux equation form apair of hyperbolic equations with two 
inclined characteristics, whose failure to coincide with the inclined character- 
istics of the momentum equations is a measure of the departure of the turbulent 
Prandtl number from unity, which might be expected to be considerable in 
boundary layers in which ‘eddy viscosity’ methods give poor results. 

The extension to three-dimensional boundary layers requires the specification 
of the direction, as well as the magnitude, of the shear stress. It is possible to 
consider the shear-stress equation in vector form and to calculate the rate of 
change of the shear-stress vector along a mean streamline providing that one 
knows the directions of the production, diffusion and dissipation vectors. It seems 
entirely plausible that the dissipation should act proportionally on the two com- 
ponents of the shear stress-that is, that the dissipation vector should always 
coincide with the shear-stress vector. The diffusion is sufficiently small for fairly 
crude empirical rules to be used, at least in mild pressure gradients. The chief 
difficulty is the direction of the production vector: the problem may be posed as 
follows. ‘The rate of production of turbulent energy is the scalar product of the 
shear-stress vector and the principal velocity-gradient vector (the latter having 
components aUlay and aW/ay). The newly produced turbulence itself carries a 
shear stress. What is the direction of that shear stress ‘1 ’ There is no real justifica- 
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tion for hoping that the question has a simple answer, but it is certainly tempting, 
and perhaps even reasonable, to hypothesize that the increment in shear stress is 
in the direction of the principal velocity-gradient vector, that is, in the same plane 
as the principal rates of strain. This is certainly more general than the assumption 
that the whole of the shear stress is in the direction of the principal velocity 
gradient, and reduces to that assumption in the inner layer where production 
equals dissipation. The contrary assumption, that the increment in shear stress 
is in the direction of the original shear stress, would prevent that direction from 
changing at all. 

It is possible to derive approximate methods by using weighted integrals of 
the shear-stress equation across the boundary layer, together with the usual 
momentum and energy integral equations obtained from the mean-motion 
equation. Families of velocity and shear-stress profiles are required and could be 
obtained from ‘exact ’ solutions of the full equations. The crudest of such methods 
uses an unweighted integral of the shear-stress equation (from which the diffusion 
disappears) and a one-parameter family of shear-stress profiles. It remains to be 
seen whether the large reduction in computer time will justify the inevitable 
decrease in accuracy. 

It may be as well to end on a note of caution. The reason why the empirical 
relations between the shear stress and the rest of the turbulence are so well be- 
haved is that attached turbulent boundary layers are a rather small subset of all 
the possible turbulent flows: the empirical expressions would not in general be 
valid in other types of flow such as boundary layers just downstream of re- 
attachment, wall jets or free turbulent flows. There is no reason why different 
empirical relations should not be used if they covered a sufficiently large set of 
such flows to be useful. 

.We hope to explore some of these interesting and important extensions to the 
method ourselves, but it seems unlikely that sufficient theoretical or experimental 
effort will be available to do this thoroughly in the near future. 

We have already mentioned our indebtedness to Rlr P. G. Williams, formerly 
of Mathematics Division, NPL, for pointing out that our equations were hyper- 
bolic: we have also had the benefit of several discussions with him on boundary- 
layer theory and numerical methods. We are indebted to several other members 
of Mathematics Division, in particular Mrs M. Price, for help and advice in the 
early stages of computer programming, and to Miss B. Webber and her staff for 
running the KDF 9 computer. We are grateful to a referee for several helpful 
comments. 

The work described in this paper forms part of the research programme 
carried out by the Aerodynamics Division of the National Physical Laboratory 
for the Ministry of Aviation. 
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